
YASFIIRE: Yet Another System for IIR Evaluation
Xing Wei

School of Information
University of Texas, Austin
weixing1985@gmail.com

 Yinglong Zhang
School of Information

University of Texas, Austin
ylZhang@utexas.edu

Jacek Gwizdka
School of Information

University of Texas, Austin
iiix2014@gwizdka.com

ABSTRACT
We present a system that supports Interactive Information
Retrieval user studies on the Web. Our system provides support
for user and task management, for processing web-based task
specific interfaces and for Web-event logging. It also offers
functionality useful to IIR studies that capture eye-movement on
Web page elements. The system complements logging
functionality offered by a typical usability/eye-tracking software
packages and is designed to act in concert with such software.

Categories and Subject Descriptors
H3.3 Information Search and Retrieval: Search process; H.5.2
User Interfaces: Evaluation/methodology.

General Terms
Human Factors.

Keywords
Interactive information retrieval; evaluation; experiment support.

1. INTRODUCTION
In contrast to the traditional Cranfield-style IR evaluations,
Interactive Information Retrieval (IIR) evaluations offer numerous
challenges due to lack of standardized collections, research
protocols and measures. The situation has improved in recent
years with several proposals that targeted the lack of
standardization (e.g., [5][6]). A number of frameworks and
systems for IIR evaluation have also been proposed (e.g., [2][8]).

Why propose another system for IIR experiments on the Web?
We created our system to complement logging functionality
offered by typical usability/eye-tracking software packages and to
act in concert with such software; to enable on-the-fly processing
and modification of external web-based interfaces; to capture
coordinates of web interface elements in support of eye-tracking
data analysis; and to provide essential IIR experiment
management support. Accordingly, our system provides support
for user and task management, for processing web-based task
specific interfaces and for logging Web-events. It also offers
functionality useful to IIR studies that need to capture eye-
movement on Web page elements.

2. RELATED WORK
One of the first systems created expressly for IIR experiments was
WiIRE (Web Interactive IR Experiments tool) [9]. The tool was
designed to support creating and conducting experiments with
Web-based user interfaces. WiIRE enabled experiment

management and included delivery of questionnaires, tasks, task
interfaces and other essential experiment components. WiIRE
logged questionnaire responses and task completion times, but it
did not support fine-grain user interaction logging.

Framework presented in [2] was focused on capturing and
integrating user interaction from multiple loggers, on support for
experiment management (user and task management), and on
storage and representation of data recorded from multiple sources
as well as on data analysis. The framework supported extensive
logging through the use of third-party loggers. Their use,
however, required a not-necessarily-trivial customization at the
software and data representation levels.

SCAMP [8] was a system designed on top of PuppyIR2
framework. The system supported creation of typical experimental
designs. Noteworthy was its ease of use, mainly due to no need
for customization or coding. SCAMP came also with some
limitations. Firstly, this system only supported within-subject
experimental design, hence it could not be used in some more
complex experimental designs, such block design and mixed
design. Secondly, SCAMP did not record participants’ search
actions. Lastly, if a part of an experiment failed to be finished,
SCAMP didn’t allow participants to resume completion of the
unfinished tasks.

Eye-tracking has received a extensive attention in IIR studies in
the last decade [7]. The work often focused on recording and
analyzing eye fixation patterns on ranked search results pages
(e.g., [4]). However, eye-tracker loggers provide a rather weak
support for automated capture of eye fixations on dynamic areas
of interest, such as search box or individual search results. A few
researchers created their own solutions for automated capture of
AOIs. For example, Tran and Fuhr’s AOILog system [10] tracks
position, visibility and size of users interface objects, so that
user’s gaze on this objects can be captured and analyzed.
However, AOILog system is designed in a Java-based framework
and its interface element capture ability is limited to Java Swing
GUI objects. Thus, it only supports IIR interfaces written in Java.
Moreover, AOILog needs to be recompiled with an IIR interface
before it can be used. Unlike AOILog, our system, YASFIIRE
uses JavaScript to automate AOI capture. JavaScript can be run
inside most Web browsers without further modification, thus,
YASFIIRE supports more widely available search task interfaces
implemented in HTML-related technologies. Others who
employed a similar approach include WebGazeAnalyzer project
[1], in which researchers captured coordinates of web page DOM
(document-object model) structure. That project, however,
focused only on eye gaze capture on web pages. It did not address
capture of other interactions nor experiment management. In
another project, Buscher et al. [3] used JavaScript inside web
pages to record web page elements of SERPs and log mouse
interaction. Although, their approach is similar to ours, their main
project goal was to capture user search interactions at a large scale
and not using eye-tracking.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

IIiX '14, Aug 26-29 2014, Regensburg, Germany
ACM 978-1-4503-2976-7/14/08.
http://dx.doi.org/10.1145/2637002.2637051

316

YASFIIRE shares some similarities with each type of the
described systems. Yet, it integrates the different functionalities in
a new way. YASFIIRE provides basic functionality in support of
managing IIR research experiments. It records participants’
webpage interactions such as loading, scrolling, and closing of
pages. It records coordinates of Web-based interface elements
needed for eye movement data analysis. It allows for modification
of third-party Web-based interfaces, thus enabling a number of
different IIR evaluation scenarios.

3. SYSTEM ARCHITECHTURE
We present our system (Figure 1) by referring to the general
evaluation framework proposed by Hall & Toms in [5]. Our
system provides support for functionalities identified by them as
belonging to three core components: Research Manager,
Experiment Manager, and Data Extractor ([5], Fig 1.).

Figure 1. System architecture: the main blocks.

The Research Manager serves to define users, tasks, task
rotations along with their assignment to users. Our philosophy in
creating YASFIIRE was to take advantage of existing software
packages and not to provide a turn-key system. This approach
allows for a greater flexibility in the types of supported
experiments, but it comes at a cost of a higher expertise required
from researches using the system. For example, the experiment
user and task information is entered using a standard MySQL
database GUI interface. A researcher uses this interface to access
and modify experiment database. This database plays an
important role in YASFIIRE as it stores experimental design and
maintains current status of experiment execution and tracks the
lifecycle of an ongoing experiment. This functionality allows for
resuming experiment at the most recent task, in case some system
components fail during an experiment.

The Experiment Manager functionality is distributed between
the YASFIIRE proxy server – the heart of our system (described
in detail later – see Figure 2), and a third-party usability/eye-
tracking logging software. The proxy server uses experiment
database to deliver tasks along with associated search task
interfaces. It controls task rotations, its association with users, and
it knows which interface to present and, if applicable, how to
modify it before displaying it. The timing of the delivery is
controlled by a participant through interaction with the
usability/eye-tracking logging software. Researcher loads into this
software a list of identifiers (such as URLs) that define types of

experiment interfaces presented to a participant. The types of
experiment interfaces we currently support are: task description
display interface, questionnaires (e.g., a pre-/post-questionnaires)
and task specific interfaces (such as, search engine interfaces).
The usability/eye-tracking logging software does not control task
order, nor does it control which task is being conducted – both are
under control of the proxy server.

In the spirit of our philosophy, our system does not offer logging
of lower granularity user interactions. Instead, it relies on this
functionality being provided by third party usability/eye-tracking
logging software, which is used to control lower granularity data
logging (e.g., mouse clicks, key presses, screen contents, eye-
tracking data).

The Data Extractor takes the experiment data and saves it in a
tabular format common to many statistical packages (e.g., SPSS)
or languages (R). Part of its functionality is to load the data
exported from a usability/eye-tracking logger to a database and
link it with the experiment data.

4. SYSTEM FUNCTIONALITY
IIR experiments can be conducted using own task user interfaces
or external task interfaces. Our system supports building the
experiment environment on top of pre-existing task specific
interfaces located on external Websites. In particular, our focus is
on supporting task specific interfaces located on remote servers
that experimenters do not control.

The core component of the system is the Request/Response
Processor written in Node.js. The R/R processor serves as an
intermediate component that monitors and modifies HTTP
requests and responses between the local computer and the remote
server (Figure 2).

Figure 2. More detailed system architecture showing the

process of loading external web-based interfaces.

4.1 Experiment server
Our proxy is as a full-featured server with its own database
(Experiment Database) that controls entire IR experiment
lifecycle (user and task management) and with a “write-only”
database (Experiment-Data Database) that stores user responses,
webpage interactions (such as, loading, scrolling, and closing of
pages), task completion times, and coordinates of selected web
page elements, in support of eye-tracking data analysis.

317

4.2 Reconstruction of Web page interfaces
One goal of our system is to support IIR experiments that use task
interfaces located on remote servers. Our system modifies a
number of elements on a Web page including its appearance and
interaction mode. This is achieved by having our proxy server
inject JavaScript files and CSS files into Web pages that are
requested from a remote server (Figure 3). This technique allows
us to provide several types of functionality, we give two examples
below.

Figure 3. The process of loading a Web page from a remote

server.

4.2.1 Extended bookmarks and notes on web pages
In one of our IIR experiments, a user needs to be able to collect
and annotate web pages of interest, as well as to delete and
modify the added annotations. This functionality extends the web
browser bookmarks. Our extended bookmarks and their interface
controls are displayed in the left-sidebar, next to a task interface.
They are integrated into one web page together with a web-based
task interface from an external website (Figure 4). The
bookmarks and annotations are stored in the experiment data
database. This functionality is provided by the Request/Response
Processor together with PHP Database Server (Figure 2).

4.2.2 Support for eye-tracking data analysis
The YASFIIRE proxy server injects into Web pages JavaScript
dedicated to collecting coordinates of specified elements of a page
DOM structure. The collected coordinates are stored in the
experiment data base and are later used in eye-tracking data
analysis to automatically locate what participants were looking at.
These detailed records enable a more comprehensive analysis of
users’ eye movement patterns in searching behavior.

4.3 Integration of new content with Web pages
Integration of external data into Web pages from a third-party
sever can be problematic due to security enforcement inside Web
browsers. Our proxy server supports integration of data from
third-party sources with Web-based task interfaces from remote
servers. Our server can extract the data from any third-party Web
page, integrate it and display it together with a Web page from the
remote server. This technique avoids cross-domain security
issues, that is, it avoids a web browser security checks that forbid
a web page from website A request any content from a website B
server. This functionality enables experiments that require a high-

degree of web page content customization from different data
sources.

For example, in one of our IIR experiments, we present a category
list on the left side of the SERP using the data which comes from
a third Web page. In order to do this, the Request/Response
Processor is designed to request and parse a third-party Web
page(s) and to cache responses with search results. It then
integrates the data extracted from the third-party Web page with
the SERP and presents it together to a user (Figure 5).

Figure 4. A screen shot showing task description,

bookmarking facility and an result of integrating search
task interface with additional information (categories).

4.3.1 Example scenarios of use
YASFIIRE architecture and its functionality enables several types
of IIR studies. Below we show two example scenarios.

Figure 5. Scenario 1: Search task interface A/B testing with

one search engine.

In scenario 1, data (e.g., search results) provided by one external
source is displayed to a user in two different task specific
interfaces. One application of this scenario is in a standard
usability A/B tests of two interfaces.

318

In scenario 2 (Figure 6), data from multiple external sources is
displayed using the same task interface. One application of this
scenario is in blind testing of search engine results ranking, where
identity of a search results source is not revealed to a user.
Another application is in experiments in which search results
provided by multiple search engines are fused into one set and
displayed in one SERP.

Figure 6. Scenario 2: Search engine algorithms A/B testing

with the same search task interface.

5. CONCLUSIONS AND FUTURE WORK
We presented YASFIIRE – Yet Another System for IIR
Evaluation. Our system supports IIR research by providing a
platform for managing experiments which aim to evaluate and
compare user interaction with different interactive information
retrieval systems.
The main contributions of YASFIIRE are two-fold. The system
architecture enables a number of different experiment scenarios.
For example, researchers can not only perform A/B usability
testing of different searching engine interfaces, as shown in
Figure 5, but also compare the algorithms of different information
retrieval system (see Figure 6).

The second contribution lies in facilitation of eye-tracking data
analysis in the realm of IIR. As mentioned in the preceding
sections, automated recording of interface element coordinates
enables researchers to analyze and interpret data related to
participants’ eye movement during information search sessions.

In addition to the two main contributions, YASFIRRE has a
flexible design based on JavaScript environment. Researchers can
tailor the system according to their experimental design needs by
“inserting” third party software and by integrating it with
specifically designed programs. For instance, in one of our IIR
studies, cognitive tasks and interfaces were incorporated into the
system. Our PHP Database server integrated cognitive tasks
results into our main experiment data database. In this sense,
YASFIRRE has a great capacity of assisting researcher in
designing a wide range of IIR experiments. YASFIIRE controls
experiment tasks using URLs. It can thus be used in combination
with any basic usability/eye-tracking logging software that
supports Web stimuli.
Limitations of our system include the need for customization
specific to each IIR experiment. Also, our system targets
(relatively) experienced IIR researchers.

YASFIIRE is a work in progress. In future work, we plan to
provide some support for customization and to make our system
easier to use for less experienced researchers.

6. ACKNOWLEDGMENTS
This research project was funded, in part, by the IMLS Career
Development Grant #RE-04-11-0062-11A awarded to Jacek
Gwizdka.

7. REFERENCES
1. Beymer, D. and Russell, D.M. WebGazeAnalyzer: a system

for capturing and analyzing web reading behavior using eye
gaze. CHI ’05 Extended Abstracts on Human Factors in
Computing Systems, ACM (2005), 1913–1916.

2. Bierig, R., Gwizdka, J., Cole, M., and Belkin, N.J. An
Experiment and Analysis System Framework for the
Evaluation of Contextual Relationships. Proceedings of the
2nd International Workshop on Contextual Information
Access, Seeking and Retrieval Evaluation, (2010), 5–8.

3. Buscher, G., White, R.W., Dumais, S., and Huang, J. Large-
scale analysis of individual and task differences in search
result page examination strategies. Proceedings of the fifth
ACM international conference on Web search and data
mining, ACM (2012), 373–382.

4. Granka, L.A., Joachims, T., and Gay, G. Eye-tracking
analysis of user behavior in WWW search. Proceedings of
the 27th annual international ACM SIGIR conference on
Research and development in information retrieval, ACM
(2004), 478–479.

5. Hall, M.M. and Toms, E. Building a Common Framework
for IIR Evaluation. In P. Forner, H. Müller, R. Paredes, P.
Rosso and B. Stein, eds., Information Access Evaluation.
Multilinguality, Multimodality, and Visualization. Springer
Berlin Heidelberg, 2013, 17–28.

6. Kelly, D. Methods for Evaluating Interactive Information
Retrieval Systems with Users. Found. Trends Inf. Retr. 3,
1—2 (2009), 1–224.

7. Lorigo, L., Haridasan, M., Brynjarsdóttir, H., et al. Eye
tracking and online search: Lessons learned and challenges
ahead. Journal of the American Society for Information
Science and Technology 59, 7 (2008), 1041–1052.

8. Renaud, G. and Azzopardi, L. SCAMP: A Tool for
Conducting Interactive Information Retrieval Experiments.
Proceedings of the 4th Information Interaction in Context
Symposium, ACM (2012), 286–289.

9. Toms, E.G., Freund, L., and Li, C. WiIRE: the Web
interactive information retrieval experimentation system
prototype. Information Processing & Management 40, 4
(2004), 655–675.

10. Tran, V.T. and Fuhr, N. Using eye-tracking with dynamic
areas of interest for analyzing interactive information
retrieval. Proceedings of the 35th international ACM SIGIR
conference on Research and development in information
retrieval, ACM (2012), 1165–1166.

_

319

